
Creating a Volcano Plot from DESeq2 Analysis
January 2, 2025 Off By adminTable of Contents
ToggleStep-by-Step Instructions
1. Install Required Packages Ensure the following R packages are installed:
2. Perform Differential Expression Analysis Run DESeq2 for your dataset:
library(DESeq2)# Load your count matrix and metadata
counts <- read.csv("counts.csv", row.names = 1)
metadata <- read.csv("metadata.csv")
dds <- DESeqDataSetFromMatrix(countData = counts,
colData = metadata,
design = ~ condition)
dds <- DESeq(dds)
res <- results(dds)
3. Prepare Data for Plotting Extract necessary values (log2 fold change and adjusted p-values):
res_df <- as.data.frame(res)
res_df$log2FoldChange[is.na(res_df$log2FoldChange)] <- 0
res_df$padj[is.na(res_df$padj)] <- 1 # Assign non-significant values# Thresholds for up/down-regulated genes
log2FC_threshold <- 1.5
pval_threshold <- 0.05
res_df$significance <- ifelse(
res_df$padj < pval_threshold & res_df$log2FoldChange > log2FC_threshold, "Upregulated",
ifelse(res_df$padj < pval_threshold & res_df$log2FoldChange < -log2FC_threshold, "Downregulated", "Not Significant")
)
4. Basic Volcano Plot Using ggplot2
library(ggplot2)
ggplot(res_df, aes(x = log2FoldChange, y = -log10(padj), color = significance)) +
geom_point(alpha = 0.6, size = 1.5) +
scale_color_manual(values = c("blue", "grey", "red")) +
theme_minimal() +
labs(title = "Volcano Plot",
x = "Log2 Fold Change",
y = "-Log10 Adjusted P-Value")
5. Enhanced Volcano Plot Using EnhancedVolcano
for better visualization:
library(EnhancedVolcano)EnhancedVolcano(res,
lab = rownames(res_df),
x = "log2FoldChange",
y = "padj",
xlab = bquote(~Log[2]~Fold~Change),
ylab = bquote(~-Log[10]~P~Value),
pCutoff = 0.05,
FCcutoff = 1.5,
col = c("grey30", "forestgreen", "royalblue", "red2"),
legendPosition = "top",
labSize = 3.0)
6. Save Volcano Plot Export your plot as an image:
ggsave("volcano_plot.png", width = 8, height = 6)
7. Online Tools for Volcano Plot Creation
- EnhancedVolcano: R package for professional volcano plots.
- VolcaNoseR: A web tool to generate volcano plots interactively.
- Bioinformatics.org tools: Various visualization tools, including volcano plots.
Tips for Extracting Filtered Data Use filtering to extract specific genes of interest:
significant_genes <- res_df[res_df$significance != "Not Significant", ]
write.csv(significant_genes, "significant_genes.csv")
Related posts:
Docker for Bioinformatics Analysis
bioinformaticsStep-by-Step Manual: Why and How to Use Galaxy for Bioinformatics
A.I10 Essential Free Tools for Researchers and Writers
A.ICloud Computing, Big Data, and Hadoop in Bioinformatics
bioinformaticsChatGPT in Bioinformatics and Biomedical Informatics
A.IBioinformatics Tools for Drug Discovery
bioinformaticsStep-by-Step Manual: Numbers Every Bioinformatician Should Know
bioinformaticsDecoding Metagenomic Data: A Guide to Pathway Reconstruction and Analysis
genomicsExploring the Wonders of Biophysics: A Beginner's Guide with a Focus on Bioinformatics Applications
bioinformaticsBioinformatics Software Trends in 2024: Unveiling the Genomic Analysis Frontiers
bioinformaticsProgress in Single-Cell Multi-Omics Integration
bioinformaticsProtein-Protein Interaction Prediction Tutorial
bioinformaticsLinear vs. Non-Linear Methods for Multi-Omics Data Integration
bioinformaticsLarge Language Models in Bioinformatics
A.IBioinformatics - Tools, softwares & Programmes
bioinformaticsHow Machine Learning Enhances Cancer Prognostic Models
A.I