
Creating a Volcano Plot from DESeq2 Analysis
January 2, 2025 Off By adminTable of Contents
ToggleStep-by-Step Instructions
1. Install Required Packages Ensure the following R packages are installed:
2. Perform Differential Expression Analysis Run DESeq2 for your dataset:
library(DESeq2)# Load your count matrix and metadata
counts <- read.csv("counts.csv", row.names = 1)
metadata <- read.csv("metadata.csv")
dds <- DESeqDataSetFromMatrix(countData = counts,
colData = metadata,
design = ~ condition)
dds <- DESeq(dds)
res <- results(dds)
3. Prepare Data for Plotting Extract necessary values (log2 fold change and adjusted p-values):
res_df <- as.data.frame(res)
res_df$log2FoldChange[is.na(res_df$log2FoldChange)] <- 0
res_df$padj[is.na(res_df$padj)] <- 1 # Assign non-significant values# Thresholds for up/down-regulated genes
log2FC_threshold <- 1.5
pval_threshold <- 0.05
res_df$significance <- ifelse(
res_df$padj < pval_threshold & res_df$log2FoldChange > log2FC_threshold, "Upregulated",
ifelse(res_df$padj < pval_threshold & res_df$log2FoldChange < -log2FC_threshold, "Downregulated", "Not Significant")
)
4. Basic Volcano Plot Using ggplot2
library(ggplot2)
ggplot(res_df, aes(x = log2FoldChange, y = -log10(padj), color = significance)) +
geom_point(alpha = 0.6, size = 1.5) +
scale_color_manual(values = c("blue", "grey", "red")) +
theme_minimal() +
labs(title = "Volcano Plot",
x = "Log2 Fold Change",
y = "-Log10 Adjusted P-Value")
5. Enhanced Volcano Plot Using EnhancedVolcano
for better visualization:
library(EnhancedVolcano)EnhancedVolcano(res,
lab = rownames(res_df),
x = "log2FoldChange",
y = "padj",
xlab = bquote(~Log[2]~Fold~Change),
ylab = bquote(~-Log[10]~P~Value),
pCutoff = 0.05,
FCcutoff = 1.5,
col = c("grey30", "forestgreen", "royalblue", "red2"),
legendPosition = "top",
labSize = 3.0)
6. Save Volcano Plot Export your plot as an image:
ggsave("volcano_plot.png", width = 8, height = 6)
7. Online Tools for Volcano Plot Creation
- EnhancedVolcano: R package for professional volcano plots.
- VolcaNoseR: A web tool to generate volcano plots interactively.
- Bioinformatics.org tools: Various visualization tools, including volcano plots.
Tips for Extracting Filtered Data Use filtering to extract specific genes of interest:
significant_genes <- res_df[res_df$significance != "Not Significant", ]
write.csv(significant_genes, "significant_genes.csv")
Related posts:
Exploring the Universe of Biological Analysis with Galaxy: A Comprehensive Guide
bioinformaticsCareer Spotlight: High Demand for Skilled Bioinformaticians
bioinformaticsUnveiling Aging: Key Factors & Strategies through Bioinformatics
bioinformaticsDeep Learning in Bioinformatics and IoT Healthcare
A.IStudy Reveals Surprising Impact of Sex Chromosomes on Gene Expression
bioinformaticsSequence Alignment Made Simple: A Guide to the Top Open Source Tools
GuidesHow Bioinformaticians Collaborate with Doctors and Clinics
bioinformaticsBioinformatics courses in Asia
bioinformaticsThe Human Microbiome Project and the Vital Role of Bioinformatics
bioinformaticsHow to Download FASTQ Files from ENA and Use Them with FastQC, Kallisto, and Salmon
bioinformaticsBest Laptops for Bioinformatics: Top Choices for High-Performance Data Analysis
bioinformaticsDeep Learning Models for Advanced 3D Protein Structure Prediction
bioinformaticsTop 6 Bioinformatics Applications Revolutionizing Drug Repurposing
bioinformaticsThe Genomic Web: Connecting DNA, AI Diagnostics and Health Data for True Personalization
A.INavigating the Complex Landscape of Metagenomics Assembly: A Guide to Strategies and Tools
genomicsExploring NCBI and GenBank: A Comprehensive Guide to Bioinformatics
bioinformatics