
Creating a Volcano Plot from DESeq2 Analysis
January 2, 2025 Off By adminTable of Contents
ToggleStep-by-Step Instructions
1. Install Required Packages Ensure the following R packages are installed:
2. Perform Differential Expression Analysis Run DESeq2 for your dataset:
library(DESeq2)# Load your count matrix and metadata
counts <- read.csv("counts.csv", row.names = 1)
metadata <- read.csv("metadata.csv")
dds <- DESeqDataSetFromMatrix(countData = counts,
colData = metadata,
design = ~ condition)
dds <- DESeq(dds)
res <- results(dds)
3. Prepare Data for Plotting Extract necessary values (log2 fold change and adjusted p-values):
res_df <- as.data.frame(res)
res_df$log2FoldChange[is.na(res_df$log2FoldChange)] <- 0
res_df$padj[is.na(res_df$padj)] <- 1 # Assign non-significant values# Thresholds for up/down-regulated genes
log2FC_threshold <- 1.5
pval_threshold <- 0.05
res_df$significance <- ifelse(
res_df$padj < pval_threshold & res_df$log2FoldChange > log2FC_threshold, "Upregulated",
ifelse(res_df$padj < pval_threshold & res_df$log2FoldChange < -log2FC_threshold, "Downregulated", "Not Significant")
)
4. Basic Volcano Plot Using ggplot2
library(ggplot2)
ggplot(res_df, aes(x = log2FoldChange, y = -log10(padj), color = significance)) +
geom_point(alpha = 0.6, size = 1.5) +
scale_color_manual(values = c("blue", "grey", "red")) +
theme_minimal() +
labs(title = "Volcano Plot",
x = "Log2 Fold Change",
y = "-Log10 Adjusted P-Value")
5. Enhanced Volcano Plot Using EnhancedVolcano
for better visualization:
library(EnhancedVolcano)EnhancedVolcano(res,
lab = rownames(res_df),
x = "log2FoldChange",
y = "padj",
xlab = bquote(~Log[2]~Fold~Change),
ylab = bquote(~-Log[10]~P~Value),
pCutoff = 0.05,
FCcutoff = 1.5,
col = c("grey30", "forestgreen", "royalblue", "red2"),
legendPosition = "top",
labSize = 3.0)
6. Save Volcano Plot Export your plot as an image:
ggsave("volcano_plot.png", width = 8, height = 6)
7. Online Tools for Volcano Plot Creation
- EnhancedVolcano: R package for professional volcano plots.
- VolcaNoseR: A web tool to generate volcano plots interactively.
- Bioinformatics.org tools: Various visualization tools, including volcano plots.
Tips for Extracting Filtered Data Use filtering to extract specific genes of interest:
significant_genes <- res_df[res_df$significance != "Not Significant", ]
write.csv(significant_genes, "significant_genes.csv")
Related posts:
Bioinformatics Consulting: Navigating the Genomic Landscape Worldwide
bioinformaticsRecent Advances in Structural Biology and Structural Bioinformatics
bioinformaticsFoundations of Computing for Bioinformatics
bioinformaticsHow Does Artificial Intelligence (AI) Actually Work?
A.ICurrent Scope of Bioinformatics in Omics era
bioinformaticsStep-by-Step Guide to Writing an Algorithm for Bioinformatics
bioinformaticsLarge Language Models in Bioinformatics: A New Era of Discovery?
A.IStep-by-Step Guide to Downloading TCGA Data from GDC
A.IHow To Analyze Imputed GWAS Data
bioinformaticsWhat is the difference between bioinformatics and computational biology?
bioinformaticsClinical Informatics: At the Forefront of Data-Driven Medicine
Guides10 Innovative Ways Bioinformaticians are Revolutionizing Healthcare
bioinformaticsChoosing a Path in Bioinformatics: Industry vs. Academia
bioinformaticsTop 10 Python Machine Learning Tutorials to Excel in Bioinformatics
bioinformaticsPicking a Programming Language for Bioinformatics and Next-Generation Sequencing (NGS)
bioinformaticsStep-by-Step Guide for Converting FASTQ to FASTA Files
bioinformatics