![bioinformatics-statistics](https://omicstutorials.com/wp-content/uploads/2023/11/DNAsequ-768x641.png)
Creating a Volcano Plot from DESeq2 Analysis
January 2, 2025 Off By adminTable of Contents
ToggleStep-by-Step Instructions
1. Install Required Packages Ensure the following R packages are installed:
2. Perform Differential Expression Analysis Run DESeq2 for your dataset:
library(DESeq2)# Load your count matrix and metadata
counts <- read.csv("counts.csv", row.names = 1)
metadata <- read.csv("metadata.csv")
dds <- DESeqDataSetFromMatrix(countData = counts,
colData = metadata,
design = ~ condition)
dds <- DESeq(dds)
res <- results(dds)
3. Prepare Data for Plotting Extract necessary values (log2 fold change and adjusted p-values):
res_df <- as.data.frame(res)
res_df$log2FoldChange[is.na(res_df$log2FoldChange)] <- 0
res_df$padj[is.na(res_df$padj)] <- 1 # Assign non-significant values# Thresholds for up/down-regulated genes
log2FC_threshold <- 1.5
pval_threshold <- 0.05
res_df$significance <- ifelse(
res_df$padj < pval_threshold & res_df$log2FoldChange > log2FC_threshold, "Upregulated",
ifelse(res_df$padj < pval_threshold & res_df$log2FoldChange < -log2FC_threshold, "Downregulated", "Not Significant")
)
4. Basic Volcano Plot Using ggplot2
library(ggplot2)
ggplot(res_df, aes(x = log2FoldChange, y = -log10(padj), color = significance)) +
geom_point(alpha = 0.6, size = 1.5) +
scale_color_manual(values = c("blue", "grey", "red")) +
theme_minimal() +
labs(title = "Volcano Plot",
x = "Log2 Fold Change",
y = "-Log10 Adjusted P-Value")
5. Enhanced Volcano Plot Using EnhancedVolcano
for better visualization:
library(EnhancedVolcano)EnhancedVolcano(res,
lab = rownames(res_df),
x = "log2FoldChange",
y = "padj",
xlab = bquote(~Log[2]~Fold~Change),
ylab = bquote(~-Log[10]~P~Value),
pCutoff = 0.05,
FCcutoff = 1.5,
col = c("grey30", "forestgreen", "royalblue", "red2"),
legendPosition = "top",
labSize = 3.0)
6. Save Volcano Plot Export your plot as an image:
ggsave("volcano_plot.png", width = 8, height = 6)
7. Online Tools for Volcano Plot Creation
- EnhancedVolcano: R package for professional volcano plots.
- VolcaNoseR: A web tool to generate volcano plots interactively.
- Bioinformatics.org tools: Various visualization tools, including volcano plots.
Tips for Extracting Filtered Data Use filtering to extract specific genes of interest:
significant_genes <- res_df[res_df$significance != "Not Significant", ]
write.csv(significant_genes, "significant_genes.csv")
Related posts:
Bridging Science and Technology: The Fascinating World of Bioinformatics and Beyond
bioinformaticsAutomated Bioinformatics Analysis: A Comprehensive Bash Script Pipeline for Protein Analysis
bioinformaticsDifference between Artificial Intelligence, Machine Learning, Neural Networks, and Deep Learning in ...
A.IEmerging areas of research and potential applications in bioinformatics
bioinformaticsSequencing through Sanger basics
bioinformaticsInsert Size and Fragment Size in DNA-Seq and RNA-Seq
bioinformaticsProtein Separation Techniques in Proteomics
GuidesA Tutorial for the Rasmol Basics
bioinformaticsHealthcare Foundation Models: Challenges, Opportunities, and Future Directions
A.IComparative Genomic Analysis: A Step-by-Step Guide to Identifying and Comparing Human and Mouse Gene...
bioinformaticsStep-by-Step Guide to Convert SAM to BAM
bioinformaticsSubstractive Proteomics approach and Computational Vaccine Discovery- A Comprehensive Guide
bioinformaticsIntroduction to Quantum Computing
bioinformaticsAugmented Reality (AR),Virtual Reality (VR) and Metaverse in Bioinformatics
bioinformaticsThe Future of Life: Bioinformatic Innovations Shaping the World of Tomorrow
bioinformaticsGenerative AI for drug discovery
bioinformatics